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A microscopic theory of intrinsic shear and bulk viscosities of solutions is given 
for a model of particles that interact with hard-sphere cores and weak long- 
range attraction. The approximation considered (the velocity chaos assumption 
of the Enskog theory) can be expected to yield quantitatively useful values for 
viscosities of the model solute-solvent system when the solute particles are not 
much larger than the solvent particles. Under solute-solvent mixing conditions 
of constant pressure and temperature we find that the intrinsic viscosities of a 
hard-sphere solute in a hard-sphere solvent can be positive or negative, depend- 
ing upon size and mass ratios; for solute and solvent particles whose mass ratio 
equals their volume ratio, the intrinsic shear and bulk viscosities are always 
positive for solute particles larger than solvent particles: in the opposite case, the 
intrinsic shear viscosity is always negative while the intrinsic bulk viscosity is for 
the most part negative, becoming positive again when the solute particle is 
sufficiently small. For solute particles smaller than solvent particles, this result is 
sensitive to change in mass ratio. The addition of solvent-solvent attraction is 
found to lower the intrinsic viscosities substantially; the addition of solute- 
solvent attraction raises it. Detailed quantitative analysis of these effects is given. 
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1. I N T R O D U C T I O N  

In 1906, Einstein derived an expression for the shear viscosity of a dilute 
suspension of spherical particles in an incompressible fluid. (1) The deriva- 
tion assumes the suspended particles to be large enough compared to the 
mean free path of fluid particles so that the latter can be regarded as 
constituting a homogeneous structureless continuum rather than a molecu- 
lar solvent. The Einstein result can be expressed as 

5~ = ~10(1 -t- g 2) (1.1) 

where ~ is the shear viscosity of suspension, ~0  is the pure-fluid viscosity, 
and ~2 the volume fraction of the suspended particles, i.e., the ratio of the 
total volume of the suspended particles to the total volume of the suspen- 
sion. 

This important result has been generalized to higher particle concen- 
tration and to nonspherical shapes. (2~ To our knowledge, however, very 
little has been done toward generalizing the Einstein result to the case of a 
bona-fide molecular solvent of particles into which solute particles of 
molecular size have been introduced. 5 It is this case that we consider here. 

We take as our Hamiltonian model a binary fluid of particles interact- 
ing pairwise with hard-sphere repulsion plus weak, long-range attraction. 
Our results are developed on the basis of the revised Enskog theory (RET) 
of hard-sphere mixtures (4) suitably extended to accommodate the attractive 
tail of the intermolecular potential. The relevant extension has recently 
been put on a firm conceptual foundation by Karkheck and Stell. (s) The 
standard Chapman-Enskog procedure (6) (in lowest Sonine polynomial ap- 
proximation) is used to obtain the transport coefficients. In comparing the 
pure-solvent transport properties to those in the presence of solute, we are 
mainly interested in our system under the thermodynamic conditions that 
are usually easiest to handle in the laboratory--fixed temperature and 
external pressure. The key thermodynamic input needed in our calculation 
is provided by the equation of state for a binary mixture of hard spheres, 
which is modified in a simple way by the presence of the attractive tail. We 
use the equation of state of Mansoori et al. (7) (for hard spheres), which is 
known to be an extremely accurate approximation. 

Although by no means exact, the resulting theory can be expected to 
yield with reasonable accuracy all the trends of the intrinsic shear and bulk 

s The only previous statistical mechanical study yielding explicit analytic and qaantitative 
results of which we are aware is the interesting exploratory investigation of a hard-sphere 
system by W. A. McElhannon and E. McLaughlin. (3) Their calculations were made without 
the use of a physically realistic solute-solvent mixing condition, which has important 
numerical consequences. In addition, we find some calculational mistakes in their work. 
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viscosities [defined by (2.28) and (2.29)] for monatomic fluids that we wish 
to study as long as the size of the solute particle is not much larger than its 
mean free path in solvent. However, we cannot expect the Enskog result to 
remain meaningful in the hydrodynamic limit, i.e., the limit 11t/o~2-->0, 
where l~ is the mean free path of solvent particles and 022 is the diameter 
of the solute particles. The Enskog theory assumes "velocity chaos," i.e., the 
lack of dynamic correlation between two particles about to collide, and this 
assumption prevents an adequate description of certain collective effects 
involving repeated collisions that appear to be fundamental to the hydrody- 
namic description. As a result, the Enskog theory yields intrinsic viscosities 
that become spuriously singular as l 11/o22-~ 0, as we shall see. In this paper 
we therefore focus mainly on the values of ttz/% 2 not too much less than 
unity, for which Enskog theory can be expected to be most useful. We also 
restrict our attention to values of aq, the integrated strength of the attractive 
potential, that correspond to values for simple mixtures that have been 
determined from the available thermodynamic data. 

The presentation of our work is as follows: In Section 2, we give a 
brief sketch of our calculation of the intrinsic shear and bulk viscosities 
from the (revised) Enskog theory of hard spheres. A mixing rule for fixed 
temperature and pressure is derived. In Section 3 we discuss how the 
inclusion of an infinitely weak, long-ranged attraction between pairs of 
molecules perturbs the results of pure hard-core repulsion. This is found to 
yield a nonnegligible contribution to the intrinsic quantities under our 
thermodynamic mixing condition. In Section 4 we give quantitative results 
and a discussion. 

. ENSKOG THEORY OF THE INTRINSIC SHEAR AND BULK 
VISCOSITIES FOR A HARD-SPHERE FLUID 

Our starting point is the revised Enskog equation (4) that reads 

3 " V) f ( r ,  Vi, t) = ~Jsj ( i , j  1,2) (2.1) (~ + V ~  = 

J 

with the collision integral 

Jy = dvj 

• [ g (r, r + ,,,j,,)f (r, v',, O (r + o,j , U '  t) 

- g q ( r , r -  oqa)f(r, Vi, t ) f j (r-  oijm Vj, t) ] (2.2) 

where f is one particle distribution function (DF) of the species i, o,j is the 
contact distance between the center of the particle i and j ,  Vii = Vj - V~, 
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the primes in the velocity denote the postcollisional values, ~r is the unit 
vector along the apse line in such a direction that the Heaviside step 
function O(a- Vii ) imposes the condition of the collision, gg is the contact 
value of the local equilibrium pair distribution funciton of a nonuniform 
system, which depends functionally on the local density fields. This depen- 
dence represents the difference that distinguishes the revised Enskog theory 
(RET) from the standard (original) Enskog theory (SET) which replaces gl2 
by Yr the contact value of the equilibrium pair DF for a uniform system, 
evaluated as a function of the density midway between the centers of the 
two particles. (8) The RET overcomes a number of inadequacies and diffi- 
culties of the SET, especially when applied to a mixture. (9'~~ With regard 
to our final result for the shear and bulk viscosities, however, we shall see 
no difference between the two theories. 

The hydrodynamic equation for change of mass, momentum, and 
energy can be constructed from (2.2) by multiplying by m i, miVg, and 
l m v 2 respectively, integrating with respect to V i and summing over i--i, 

i = 1,2. Since our interest here lies in the viscosities, only the equation for 
the change of momentum is considered: 

0 ~ -  + u ' V u  = - V . P  (2.3) 

where the hydrodynamic variables 0, u, P (mass density, velocity, pressure 
tensor, respectively) are defined through the relations 

O = E f fimidVi (2.4) 
i =  1,2 " 

o . =  g f  m,VidV, (2.5) 
i =  1 , 2 "  

P = PK -t- Pc 

PK = =, ( f m i ( V , -  u) (V, -  u)dV i (2.6) 

PC =" E �89 f MVjdV idoo(~r �9 V j i ) ( l l r  �9 Vji)lY(miV' i - mYi) 
i , j  = 1,2 

X fol da go.(r- a%o,r -  aoijo + %-o) 

x f / ( r -  a%o, Vi, t) fj(r - aoijq + oijm Vj, t) (2.7) 

In (2.7) PC (11) is identified as the collisional momentum transfer not 
included in the Boltzman-equation description. To evaluate P, one should 
solve for f .  The Chapman-Enskog procedure of normal solution for f/ is 
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known to provide an adequate means of yielding the hydrodynamic trans- 
port coefficients. We shall not elaborate here this standard procedure in 
detail but present the final results. For  P, we find up through linear order in 
gradient in the hydrodynamic velocity n 

P = e l -  7 I V "  + (V, , )  + - ~ V - u l ]  - ~ V - .  (2 .8)  

Thus, with this constitutive relation, (2.3) becomes the Navier-Stokes 
equation with 7, K the shear and bulk viscosities, now given microscopi- 
cally. The 7, ~ are given by 

7 = 71 + ~/2 + 73 (2.9)  

*h = �89 ~ ni[(o i) 
i~ 1,2 

/x~ 0(3)1,(0 
7z - 15 i,j'= 1,2 

4 Z Pijfli(j 4) 7 3 -  15 i,j = 1,2 
K = ~1 + x2 (2.10) 

~9 o (3)h(i) 
x ~ - 3 i , j  = 1,2 

4 

Here b(o i), h~ i), the coefficients of the lowest-order Sonine polynomial (6) that 
is used in our approximation, are to be obtained from the conditions (s'J2) 

8 2 j  = 1,2 fl/J('2)7/J P~/J ( b( i ) -mt  m i 4 -  b(Oj)mj 35 b(J)-b(i))OOmj 

= ( 2 . 1 1 )  5ni + -~-12 j= , i 

nih~ i) = 0 (2.12a) 
i= 1,2 

8 2 /~(2),, [h(j ) nip 4~r 2 fl(3) mj (2.12b) 
j = 1,2 t-'q _t"ijk ~ - h~i))Mif - l= - n i  + n k r  3 j=l,2 MO 

(In Ref. 13 we show that the lowest-order Sonine approximation is accurate 
in this application except for the case m 2 / m  I --)0.) The Y~j is the contact 
value of the equilibrium pair distribution function, n i is the number density 
of the species i, n = n I + n2, /~0 ----" mimj /mi  4- mj, Mij = m i 4- mj, oij 
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= �89 "~- Ojj), /~/j(,t) ~- olninjYy, pq = (2~rkTttq) '/2. For the pressure, we have 

,=kT(n+-~-  ~ B~ 3)) (2.13) 
i,j = 1,2 

The calculations for the explicit ~ and x are very tedious but straight- 
forward. Since we shall concern ourselves with the intrinsic viscosities 
[defined by (2.28) and (2.29)], we expand ~, K up to the linear order in the 
solute volume fraction ~2, keeping the ratio of the other parameters arbi- 
trary: 

= (,)o + ~2(~), (2.14) 

f - - L (  1+ 8 Y o  ]2 2--~ ~'768e2Y~ a ( ')0 = ~ ~1Y~ + 11 

8 2 ( 1 + q ) 3  1+  #12 ylo2_ 11,____22 + 8 yO (~),= 5-~' Y" 5 m, y0 5o, ,,,2 

[ 768 ~2vo ( 2/z12 )'/2( -l~yO 
+ 2--~1~u,2+ ~ 1 + q)4q 12 

-t-~1-1 1 "t- -~ m---- T- Y~I 5~lY~ 

[ 2/2It'2 )'/2 x ~r  . q)[__~_ m I 12 q(1 + 

1 8 o o 2(  /~,2 1)(1 + q)3~, yO2] - -  ~-~i YI1) Yl2 + ~- ml x to ( l+  

X __ ( 2(\ milL12) y~ l 5~1 4 ( 1 "/r 

2 (l + q) P--~l ~lY~ ~ x q3+3 
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,, = ( ,%  + ~2(,,), 

256 ~?ylo1~ ( 
( %  = T J  

\1/2 
= I 2 5 6  2 o 32 2>'2) (~)1 [ gq7 ~1YII,2 -4- ~ D-I~--~ q-Z(1 + q)46:1 Yl~ 

12} • YO2Iq3 Yl~ 1 (1 -Jr- q)3p ~1_.~2 ~B 
yO 2 4 m 1 

Here 

p = m l / m 2 ,  q = 0,1/022, 
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(2.15) 

)1/2 
3 l ~ ( - -  - -  ~i = -~ ni~ ~ = m T 1 

YO 

For the pressure, we find 

e = ( / ' )o  + ~2(P) ,  

(P)o  = n lkT(1  + 4~Y~ (2.16) 

( P ) ,  = nikT[4~,r~ + (1 + q)3r~ 
The viscosities and pressure in the pure solvent are obtained by substituting 
4 ~ n o (pure solvent volume-fraction and number density) for 81, nl in (7)o, 
(X)o, and (P)o: 

{ 1 [ 8~~176176 2+ 768 } 
7,0 = YOl(~O ) 1 + ~ 2-ff~v ~~176176 T/((2.17) 

= [ 256 ,-o-'.,o,,-o,I e "~-q7 ~gl Ill(~[ )J•l (2.18) KIO 
L 

Plo = n~ 1 + 4(~176176 (2.19) 

In order to compare the viscosities of the suspension with those of the 
pure solvent, the thermodynamic conditions of both systems should be 
specified. We shall assume, in mixing, fixed conditions of temperature, total 
solvent mass, and external pressure, which represents the most common 
experimental situation. To show how this condition differentiates 41 from 
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G ~ Z = P / k T  is expanded up through the deviation linear in ~2: 

3Z 3Z 

where 0 refers to the pure solvent, i.e., the point (G1 = ~~ = 0). By 
substituting the mixing rule in the form 

G, --- G~ - MG2) (2.21) 

and by noting that Z = Z0, we find 

[ oz ~Go[ 0z) 
M= l ] o /  t- l o 

Substituting (2.16), (2.19), we 

1 q3 

This also can be expressed as 

find for the hard spheres 
3 0 0 0 2 0 

+ (1 + q) GI YI2 + 4G1 Yll,2 

AtO2v 0 1 AI- 8GOyO I -~- W~ol --11,t 

(2.22) 

(2.23) 

)0 (2.24) 

where flo is the isothermal compressibility of pure solvent defined as 

r = _ 7 =  In ,  (2 .2s)  
\ 3nl ]r  

For the fluid of general intermolecular interaction, (2.22) and (2.24) will 
provide a means of determining M through thermodynamic measurements. 

The simplest and most illuminating expression for M in the opera- 
tional sense is simply given as follows: Consider a sample volume V 0 of the 
pure solvent. By adding an infinitesimally small amount of the solute 
particles, the overall volume also will generally increase infinitesimally 
(AV). The volume fraction of the solvent particles would be affected 
according to the relation 

' , -  Vo+AVN'V' _~o(  t _ ~AV) (2.26) 

where v~, N t are the molecular volume and the total number of the solvent 
particles. By comparing this with (2.21), we find 

M --- A V~ V 2 (2.27) 
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where V 2 = N2t~ 2 is the total vo lume of the solute mixed. Thus,  determina-  
tion of M requires only a simple exper iment  of measur ing  the volume 
overf low A V. 

Let  us imagine the case in which the solute particles are macroscopi-  
cally large. Our  macroscop ic  experience immedia te ly  tells us that  MH = 1 
in this limit, since in hard-sphere  repulsion there is no solvation effect, i.e., 
V 2 = A V. In  fac t ,  w h e n  the M a n s o o r i - C a r n a h a n - S t a r l i n g - L e l a n d  
(MCSL)  (7) approx imat ion  for Y/j (see Appendix)  is used, (2.23) gives in this 
limit a value ranging f rom 0.98 to 1 for any  4 ~ This r emarkab ly  slight 
deviat ion f rom unity suggests strongly the possibility that  the M C S L  
remains  a good  approx ima t ion  in the q ~ 0 limit for  all solvent density. 

With  the mixing rule (2.21), (2.23), we are now in a posit ion to evaluate  
the intrinsic viscosities defined by  6 

( n )  ~- lira ~7 - ~/lO ( 2 . 2 8 )  
~2 -->0 42'~ lO 

( x }  ~ l i m  h: - xlO 
~2 -~o ~2~1o (2.29) 

We  find f rom (2.14) and  (2.15) 

1 a( )o 
*/1o 04 ~ + " (2.30) 

= - M S  1 a lo 
~7,o ~4 ~ + - -  I (2.31) Th0 ~=~o 

Figures 1 and  2 show trends in (~/) and  (x )  for the c a s e p  -1 ~- m 2 / m  ~ 
= (022/ol l )"  (a  = 0, 2, 3, 4) for 4 ~ = 0.4, the volume fraction of the typical 
dense liquid. A remarkab le  feature,  first of all, is the divergence that  goes as 
q - t =  o :2 /o]  I in the limit q ~ 0 .  Since the term responsible for this di- 
vergence  in (2.14) and  (2.15) is precisely p ropor t iona l  to o22/111 = 
6"~41Yllq -I ,  where 111 = 1/(,/2~'nlO~lYlO is the mean  free pa th  of sol- 
ven t - so lven t  collision, we natural ly expect  the h y d r o d y n a m i c  description 

6 Our definition of the intrinsic shear viscosity is nondimensional and thus different from the 
conventional one which carries the dimension of inverse mass density: 

[r/] = lim "0 - r/10 
C2---)0 s 

where c 2 = n2m 2. We also define the intrinsic bulk viscosity in terms of rh0 rather than xl0 , 
since ~lo vanishes in the low-density limit. 
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Fig. 1. Intrinsic shear viscosity v s .  0"22/011 at solvent volume fraction ~0 = 0.4. The case 
m 2 / m  ] = (o22/ol])  3 is denoted by a solid line, the case m I = m 2 by a dashed line, the case 
m 2 / m  I = (o22/o 1~)2 by open circles, and the case m z / m  z = (o2z/o1~)4 by crosses. 

10 

-5  

', {~}E 

I 

I x---'~.  - ~ -  
| x : . " O  t t 

/ X  1112 | t  t 11 
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Fig. 2. Intrinsic bulk viscosity vs. o22/ol l  at solvent volume fraction 4 ~ = 0.4. Conditions 
and notat ions as in Fig. 1. 
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(in which the solvent is regarded as a structureless continuum on the length 
scale of the size of solute particle) to yield the exact result in this limit. 
Since the intermolecular force between the solute and solvent particles is a 
hard-sphere repulsion which lacks a tangential component, the macroscopic 
collective manifestation of the solute-solvent interaction results in the form 
of slip boundary condition for the hydrodynamic variables on the surface 
of the solute particle. Hydrodynamic calculation with this boundary condi- 
tion yields {*/} = 1, { r } = 4 /3  + rl0/7/10 .(t3) (The famous Einstein formula 
(~/} = 5 /2  will only result from an anisotropic molecular interaction that 
allows transfer of angular momentum at collision, permitting the usual stick 
boundary condition.) 

The reason for this pathological divergence in our kinetic theory 
calculation is due to the velocity chaos assumption that breaks down badly 
in this limit, in which the solvent particles near to the large solute particle 
are likely to make repeated (correlated) collisions with it. (14) The resulting 
singularity of 0(022/ l  I 1) in { 7/}, (x } is similar to that which appears in the 
Enskog binary diffusivity, in comparison with the hydrodynamic (Stokes- 
Einstein) result. 

However, for 022/l]1 small such that a specific pair of solute and 
solvent particles does not recollide frequently one might expect the velocity- 
chaos assumption for the solute-solvent collision to better retain its valid- 
ity. This tendency has been observed in the case of binary diffusion 
through molecular dynamics studies even at solvent density as high as 
~l = 0.5.(15~ This tendency and the fact that the Enskog results satisfy the 
exact symmetry conditions that force {~} and {~} to vanish at q = 1 = p  
strongly suggest that Figs. 1 and 2 represent the trends of {~ }, { ~} for hard 
spheres with reasonable accuracy in the region q - ~ <  1, i.e., the region 
where the aforementioned singularity (q-1) is not appreciable. In addition 
to the Enskog approximation embedded in Eqs. (2.14), (2.15), and Figs. 1 
and 2 one has the approximations introduced in getting the transport 
coefficients from the Enskog equation. Since the Chapman-Enskog normal 
solution that we use is appropriate in our study of transport coefficients of 
the mixture regarded as homogeneous continuum, the only approximation 
involved is from the use of the lowest Sonine polynomial. In a forthcoming 
paper,(13) we will show this approximation is reasonably accurate as long as 
the mass of the solute particle is not too small. 

In the intermediate region of q, {~} and {~} must vanish at the point 
q = 1 =/) ,  which is no more than a statement of identity of two species. 
Inclusion of molecules identical to those of the solvent under constant 
pressure and temperature does not affect the property of the initial system. 

Finally we note from Figs. 1 and 2 that our way of classifying the 
mixture via p = q~, albeit somewhat artificial, shows how the intrinsic 
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viscosities are sensitive to the mass ratio. As one might expect, the result is 
more insensitive to the mass ratio (i.e., the solute-solvent collisional detail) 
for the larger solute particle; we find for all values c~ in the domain 
1 < e~ < 5 the results approach a single asymptote in the limit q--> 0. In the 
opposite limit, however, the result is very sensitive to the mass ratio. 

Consider the situation in which both the solvent and solute are so 
dilute that the mean free path l O. (of collision between the particles of 
species i and j)  is much larger for all i and j  than the size of the solute and 
solvent particles. In that regime, the velocity correlation as well as the 
spatial correlation is absent (g9 = 1); therefore the Boltzmann equation 
description should correctly apply. It should be noted, however, that we 
would not have arrived at the low-density expression of { ~ }, had we started 
with the Boltzmann equation in deriving the intrinsic quantities. Since 
in the Boltzmann-equation description Y,j = 1 and shear viscosity for 
the single component is the density-independent ~/~, our result in 
the low-density limit would differ in the additional terms [i.e., 
- M ~ ~  ~ and in the part involving Yl~a in 01)1 (which are 
generally nonvanishing altogether) from the Boltzmann-equation result 
given in Chapman and Cowling. (6) For the bulk viscosity, which the 
Boltzmann equation is incapable of yielding, we find a very interesting fact: 
Although the pure solvent of low density does not have bulk viscosity, it 
does have the intrinsic bulk viscosity given by (~)i, that is, 

- -  -11 /*'2] 2 (2.32) 
\ mi 

(The Boltzmann-equation results for intrinsic viscosities are wrong here 
because the intrinsic viscosities involve derivatives with respect to con- 
centration--e.g., intrinsic shear viscosity involves ~(~)0/3( ~ as well as the 
concentration dependence of Yli,2- These quantities involve an order of 
concentration dependence--that of the second virial coefficient--that is 
entirely neglected in the Boltzmann equation, which yields an ideal-gas 
level of description in this regard.) 

3, INCLUSION OF THE INFINITELY WEAK AND 
LONG-RANGED ATTRACTION 

It is well known that the hard-sphere model, though crude, represents 
the main features of the dense fluid structure and is successful in correlat- 
ing the data of the transport coefficients of real dense fluids in various 
ways.(16) These facts lend support to the view that a workable perturbation 
theory of the transport can be developed with hard-sphere fluid taken as a 
reference system. This scheme has already produced fruitful results in 
regard to thermodynamic properties. 
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We shall consider here the perturbation in the form of the weak and 
long-ranged attraction (van der Waal's attraction) added to the hard-core 
repulsion. The intermolecular potential is written as 

qS(r) = ~b~t + y3ffL(Yr ) (3.1) 

where the smallness parameter 2/is the inverse of the range of the attractive 
force. 

Resibois et al. (iv) discovered that the leading effect of the perturbation 
on the shear and bulk viscosities is in the order of y: 

X ( y )  = X n + O(y) (3.2) 

Thus, the transport coefficients are those of the hard-sphere reference 
system in the limit y ~ 0. However, as is well known, the thermodynamic 
properties are different in a significant way(18): For the free energy and 
pressure we have 

A = A H + a n 2 / k T  (3.3) 

P = PH - an2 (3.4) 

where 
�9 3 o v  

- 2 a  = hm7 ( q)L(yr)dr  
y --)LI d O i  I 

= f0 ~ (x) dx (3.5) 

but for the radial distribution function at its contact value, we get 

Yy(oO) -- Y~(oy) + O(~P) (3.6) 

With the hard-sphere pressure P n  given by the Percus-Yevick com- 
pressibility expression or by the more exact form of Carnahan and Star- 
ling(19) (see Appendix), (3.4) is a modified van tier Waals equation of state 
which yields reasonable thermodynamics for the monatomic fluids. (2~ 

The generalization of (3.5) to binary mixtures is achieved by the van 
tier Waals prescription (21) 

n2a = ~,, ninjaij (3.7) 
i,j = 1 ,2  

where 

and by (2.13) 

3 o0 .. 
- 2 a  9 lim7 ( q~i~(yr)dr 

"t ' ~ 0  , )o , j  

= f o % { ( x )  a,, 

PH 

~,J 

(3.8) 
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In our calculation of the excess transport properties, the inclusion of 
the perturbation is expected to give a significant contribution, via our 
thermodynamic mixing funciton M (2.21). From (2.22), (2.16), (2.19) we 
find 

M= M H + A M  

q3 + (1 + q)34~ Y~ 2 - b,2) + 44~Yl~ 
= ! (3.9) 

4402y ~ 410 I + 8 4 ~ 1 7 6  - b l l  ) + t 11,1 

where b,~ = (3/2~r)aijof3/kT. The intrinsic viscosities are obtained by 
replacing M H by this M in the expression (2.30), (2.31). In the case that two 
components are identical, i.e., q = 1, bll = b12 = b22, we find 

M = M H = 1/4 0 (3.10) 

However, if the two species are identical in mass and size but internally 
dissimilar in such a way that air ~ at2, AM does not vanish. Specifically 
when all ~- a12, we have AM > 0, and the mixing results in a decrease of 
the viscosities by 

1 ~Xlo 
- A M 4 ~  X1 ~ cq4 ~ 

In the opposite case, the opposite result will be found. These intuitively 
obvious results stem from the fact that the increase of attraction by mixing 
(atl < al2 ) leads to greater compression than that given by (3.10). 

Determination of a/j 

The expressions (3.3)-(3.8) do not yield a unique means of finding a0 
and o0 that are appropriate to the study of real fluids, since real fluids do 
not have thermodynamics precisely given by these equations. Procedures to 
find a,y and o o, that yield reasonable approximations to the true thermody- 
namics are well known, however. We shall use the values of a,j and % that 
were determined by Snider and Herrington (22) from thermodynamic data 
for simple binary mixtures composed of the almost spherical molecules. 
They made their determination first for pure fluids by comparing thermo- 
dynamic data (PVT) and the latent heat of vaporization, with the equation 
(3.4) and the expressions for the molar entropy or enthalpy of vaporization 
that they obtained. In order to obtain a]2, the3~ matched their expressions 
for the excess Gibbs free energy with the measured data. With these 
semiempirical values of a;j, 03, they predicted the excess enthalpy and 
entropy of mixtures with successful agreement with the measured data. 

Snider and Herrington used the Percus-Yevick hard-sphere equation 
of state to evaluate the hard sphere term PH in (3.4), rather than the slightly 
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more  accurate M C S L  result (7) used by us, but  this can be expected to make 
a negligible difference in lhe values of a/j and o,j. Such fine points are 
inconsequential  to our  goal of determining the general trends that will 
result f rom the inclusion of attractive potentials that  are of the same order 
of integrated strength as those found in typical fluid mixtures. 

, R E S U L T S  A N D  D I S C U S S I O N  

Summing  up the contributions from the Enskog result for hard spheres 
and  f rom the weak and long-range attraction, we have 

( X }  = {X~ ) + ~ { X } o  

1 ( ~ X ' ~ 1 7 6  ( X ) '  :~, ~ (4.1) 

- x , 0  

where X is either rl or x. 
In  Tables I and  II we list the parameters  ao., og determined by Snider 

and Herrington.  In general the diameters oii given here are a little smaller 
than the effective diameters determined by other means. (23) Our  results at 
4 ~ = 0.4 are given in Table I I I  for the various mixtures considered by 
Snider and Herrington.  As is shown, A{~}a, A{x}~ are appreciable and in 
m a n y  cases predominate  over the { rl } E, { x } E- 

Figure 3 shows the trends in A { rl } ~ and  ~(  ~ }, (A { rl } a = 0.7794 zX(K } ~) 
for mixing of the solute particles of various sizes and strength a12 into the 

Table I. The Snider-Herrington Parameters for a Pure Component 
I 

Mass (atomic uni ts)  Diameters (10 8 cm) all (10 -36 cm 3 erg) 

Ar 39.94 3.356 4.58 
Kr 83.80 3.583 6.79 
N 2 28.02 3.560 4.74 
02 32.00 3.338 4.69 
CO 28.01 3.597 5.24 
CIcI 4 16.04 3.701 7.72 

Table II. The Snider-Herrington a]2 00 -36 cm 3 erg) 

Ar + K 2 5.876 Ar + N 2 4.662 
Ar + 02 4.852 Ar + CO 4.821 
N 2 + 02 4.74 N 2 + CO 4.840 
CO + CH a 6.23 Kr -F C H  4 7.271 

i 
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Table III. intrinsic Shear and Bulk Viscosities of Simple Mixtures at the 
Solvent (Species 1) Volume Fraction ~ --- 0.4 and at Temperatures 

(a) 100 K (b) 150 K (c) 200 K a 
im  

Species 

oll ml 
1 2 q = - -  P = - -  {•}E A{n}o {~}e A{~}a 

022 m2  

A r  K r  0 .937 

K r  A r  1.068 

A r  N 2 0 .943 

N 2 A r  1.061 

A r  0 2  1.005 

0 2  A r  0.995 

A r  C O  0.993 

C O  A r  1.072 

A r  C H  4 0.907 

C H  4 A r  1.103 

N z O z 1.067 

0 2  N 2 0.938 

N 2 C O  0 .990 

C O  N 2 1.010 

C O  C H  4 0 .972 

C H  4 C O  1.029 

K r  C H  4 0.968 

C H  4 K r  1.033 

0.477 0.898 (a) 1.179 1.138 1.513 

(b) 0 .540 0.693 

(c) 0 .350 0.449 

2.098 - 1.201 ( b ) -  1.202 - 1.705 - 1.542 

(c) - 0 .703 - 0 ,902 

t .426  - 0 . 3 1 4  ( a ) -  1.061 - 0 . 1 1 8  - 1.361 

(c) - 0.315 - 0 ,404 

0.701 0 .319 (a) 0 .942 0.418 1.209 

(c) 0 .314 0.403 

1.248 - 0 .297 (a) 0.125 - 0.283 0 .160 

(c) 0.037 0.047 

0,801 0.278 ( a ) -  0 .410 0 .305 - 0 .526 

(c) - 0 .117 - 0 .150 

1.426 - 0 .290 ( a ) -  0 .948 - 0 . 3 6 9  - 1.216 

(c) - 0.281 - 0.361 

0.701 0 .300 (a) 0 . 6 t 2  0.411 0 ,785 

(c) 0 .194 0.249 

2 ,490 - 0 .919 (a) 0.299 - 0 .239 0 .384 

(c) 0 .089 0 .114 

0 .402 0.875 ( b ) -  0.635 1.853 - 0 ,815 

(c) - 0 .386 - 0 ,495 

0.876 0 .030 (a) 1.225 0.013 1.572 

(c) 0.408 0.523 

1.142 - 0 .028 ( a ) -  1.337 0 .100 - 1.715 

(c) - 0 .38 l  - 0 .489 

1.000 0.021 (a) 0 ,160 0 .034 0 ,205 

(c) 0.053 0,068 

1.000 - 0.021 ( a ) -  0 .336 - 0.033 - 0.431 

(c) - 0 .106 - 0 .136 

1.746 - 0.655 (a) 1.062 - 0 . 4 4 1  1.363 

(c) 0 .336 0.431 

0.573 0.596 ( b ) -  1.105 0.808 - 1.418 

(c) - 0 .672 - 0 .862 

5 .224 - 2 .026 ( b ) -  1.036 - 0 . 9 t 7  - 1.329 

(c) - 0 .605 - 0 .776 

0.191 1.528 (b) 0.052 4.201 0.067 

(c) 0 .032 4.201 
i 

'~A(rt}a a n d  A{g}, ,  a re  the c o n t r i b u t i o n s  f rom the a t t r ac t ive  tails o f  the 

in te rpar t i c le  potent ia l s .  
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15 \ (5o1 

5 l!~) (2) 5 

Fig. 3. Contribution of intermolecutar attraction to (r/} and (~} expressed in terms of 
A(~}~ = 0.78 A{~}a for the case m2/m I = (~22/011) 3, ~-0 = 0.4. The numbers in parentheses 
indicate the ratio a12/all. 

reference fluid of argon at T - -  100 K, 4 ~ -- 0.4. For simplicity, we consider 
the case rn2/m I = (022/o~1) 3, i.e., the case in which the mass density of the 
solute and solvent particles are the same, with the trends plotted for various 
values of fixed attractive solute-solvent (argon) strength a~2. Figures 4 and 
5 represent the general trends of (X } e + A{X )a. We know of no controlla- 
ble physical process corresponding to changing the size of the solute 
particle while holding its attractive solute-solvent interaction strength 
fixed. Presumably one might be able to experimentally locate a family of 
solute molecules of different sizes but with roughly the same attractive 
solute-solvent strength; without such a family with which to compare, Figs. 
3, 4, and 5 remain somewhat physically artificial. Nevertheless they are 
conceptually extremely illuminating. Since the effect of dynamic correlation 
that Enskog theory neglects is not considered here, the reliability of the 
results of Figs. 4 and 5 is limited to the case of small solute particles, i.e., 
022/~lt ~ 1. However, as far as the A( X } ~ themselves are concerned Fig. 3 
can be regarded as representing with reasonable accuracy the effect of the 
attraction, since the inclusion of the infinitely weak, long-range attractive 
tails does not change the nature of the hard-sphere collision dynamics. As 
is shown in Figs. 3, 4, and 5, the presence of the attractive tails perturbs the 
general trends of (X  } drastically. If we add only solvent-solvent attraction 
(a~ > 0) of strength typical of simple molecules but  no solute-solvent 
attraction [at2 = 0 the graphs labeled by (0)] to the pure hard-sphere case 
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Fig. 4. 

| I  I f \  \ (Ioo) 

.H S . . . . . . .  

_ ~ ~ ' ~ j  , - I  Cr222 
i , q ~  10 ,2 q= ~ 

i rO.2)~ I( ://o) 

}//s.-(o 1 ) 
l//g 

{~I}E + A(~}a vs. 022/o11. Conditions and notations as in Fig. 3. The dashed line 
represents {'q} e. 

(shown by the dashed lines), then the intrinsic shear and bulk viscosities are 
substantially lowered by values that are essentially independent of ~22/oll 
once this ratio exceeds 3 or so; they respectively approach 4.27 and 5.49 
asymptotically as o22//o]1-> oo. When we turn on the solute-solvent attrac- 
tion in addition (a12 > 0) with a12 comparable to all, appreciable change 
occurs only for o22//Oll less than 3, where the solute-solvent attraction 
keeps the intrinsic viscosities from becoming extremely negative [as they 
become when o22/Oll decreases below unity in the absence of the solute- 
solvent interaction; graphs labeled by (0)]. For al2//al] ~ 1, in fact, {7}, 
(•} rapidly increase as O22/O11 decreases past unity, while higher solute- 
solvent attraction (e.g., a l 2 / a l l  ~ 15) is enough to keep {~), (~} positive 
for all o22//o11. As the limit o22/o]1---> oo is approached with a12 fixed, we 
observe that the effect of the solute-solvent attraction disappears and thus 
(X} approaches its value for the case a]2 = 0. This is not surprising, since 
al2 would have to grow along with o12 in order to maintain a nonvanishing 
effect on the transport as o22//o11-->o0. We note that the method of 
determining M via direct measurement of A V / / V  2 (2.27) may be the best 
way of gaining experimental mixing-rule information in finding zX{X)a 
when the values of a 0 for the mixture under consideration have not already 
been inferred from other studies. 

Since they do not include the effect of dynamic correlation, the 
Enskog results for (X } can be expected to depart from the true results at 



Microscopic Theory of Intrinsic Shear and Bulk Viscosities 531 

iif ................... 
, . , I ~ L  " ~ ~ J ~ ~ ~  , , - ~ _ ~ z  

'~ i/fo, 
v/['o" 

Fig. 5. (~c} e + A(K}. vs. o22/a~1. Conditions and notations as in Fig. 3. The dashed line 
represents (K} e. 

high values of 022/011 and at high solvent density. We shall come back to 
this problem of correcting the Enskog theory in a following paper. 
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APPENDIX 

The Mansoori-Carnahan-Starl ing-Leland (MCSL) approximation for 
YO (7) is as follows: 

Y~, = (1 - ~)-1 _1.. 3(1 _ ~)-2(~ 1 ..1.. q~2) "1- 1( 1 - ~)-3(~1 --t- q~2) 2 

Y,2 = (1 - ~)- '  + 3(1 + q) l(1 -- ~ ) - 2 ( ~ ,  -t- q~2) + 2(1 + q ) - 2 ( ~  l + q~2) 2 

Y22 = (1 - 4 ) - '  + ~q- ' (1  - ~)-2(~, + q~2) + �89 + q~2)2 
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where 

t=t~ +~2 
1 3 

~i ~ 6 ~FliOii 

q = O11/O22 

At q = 1, Yy is reduced to the Carnahan-Starling Yll of one-component 
fluid, which is a nearly exact equation of state. When the last terms of the 
above expressions are omitted, the YO reduce to the Percus-Yevick Y/j. 
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